The Practical Uses of Computational Fluid Dynamics – Not Just a Pretty Picture

Contents:

- Introduction
- Case Study 1: Air Cooled Heat Exchanger (ACHE)
 Problems related to bypass and flow distribution
- Case Study 2: Shell and Tube Heat Exchanger
 Maldistribution
- Case Study 3: Research and Development
- Case Study 4: Tube-side Flow stratification
- Case Study 5: Temperature Pinch
- Conclusion

Introduction

- Software used:
 - > CFD: ANSYS CFX
 - Geometry: ANSYS DesignModeler
- Heat Transfer: Heating and Cooling Investigated
- Reynolds range: Laminar and Turbulent

Turbulence Model: k-ε (when needed)

Case Study 1:

Air Cooled Heat Exchanger (ACHE)

Problems related to bypass and flow distribution

Why use Computational Fluid Dynamics to Investigate Air coolers?

- Air coolers are designed using empirical correlations that use assumptions such as:
 - all the liquid entering the header subsequently flows through tubes
 - perfect air distribution over the bundle

- When built, the mechanical design and build quality / tolerances can have a profound effect on such assumptions
- CFD can be used to investigate those shortcomings and the effects on performance

Bypass Problem Description

- User of lube oil Air Cooled Heat Exchanger reports significant underperformance
- Measured 50% less pressure drop than design calculations
- Lower than expected tube side pressure indicates bypass around tube bundle
- Possible causes:
 - Vent hole in partition plate
 - Missing / broken welds between partition plate and header walls

Air Cooled Heat Exchanger Geometry

1. No Bypass, 2. 12mm vent hole and 3. 12mm vent hole and side gaps

Verification of CFD simulations

- By comparing the no bypass geometry with: tube side pressure drop (nozzles, header and tubes) results with heat exchanger design software
- CFD simulation results within 8% of calculated pressure drop from heat exchanger design software

Results

12 mm vent hole = 20% mass flow bypass

- 35% reduction in pressure drop
- 11% reduction in duty

12mm vent hole and 1mm gaps = 42% mass flow bypass

- 64% reduction in pressure drop
- 27% reduction in duty

Simulation Scenarios

API 661 Recommended 40% fan coverage

- Equations used to describe fan air flow
- Same total mass-flow for each scenario
- Three plenum depths for the three fan layout:
 - 500mm
 - 720mm
 - 1000mm

Verification and Results

CFD results compared with Equation:

$$\Delta P_A = \left(2 * f_b * Nr * (\rho * V_{\text{max}})^2\right) / \rho$$

Equation commonly used to calculated cross flow air pressure drop though a tube bundle(Serth and Lestian (2014))

- Eq 2 gives ΔP_A= 86.4 Pa
- CFD gives $\Delta P_A = 88.4 Pa$
- CFD model accurately predicts the air flow

Serth R.W., Lestian T., 2014, Process Heat Transfer (2nd Edition), Academic Press, Elsevier.

Effect of Increased Plenum Depth

Effects of Maldistribution on Heat Transfer

Conclusions

- Care should be taken in sizing vent holes and pass partition welds to avoided bypass to ensure correct performance
- Increased Plenum depth improved distribution

Case Study 2: Shell and Tube Heat Exchanger Maldistribution

Thermal Resistance, % Shell 18.96 Tube 58.61 Fouling 20.72 Metal 1.71

Service:

Heat recovery for hydro treatment reactor

Problem description:

- Calculated performance should be 60% higher
- No spare capacity of fired heater to increase throughput

Shells:	TEMA: AES				
	3 in series; 2 in parallel;				
Bundle:					
Tubes:	2521; 1pass 20mm x 1.8mm x 9m				
Calculated Exchanger Performance					
Tube side dp calc / allow.		2.5kPa / 45 kPa			
Shell side HTC		900 W/m ² K			
Tube side HTC		285 W/m ² K			
Duty		Measured 20 MW / real +60%			

CFD Simulation of Bundle Maldistribution

Expected severe fluid maldistribution in the bundle on tube side

- Tube side pressure drop of 2.5 kPa, this is very low. 85% of which is in the nozzles (allowable tube side pressure drop 45 kPa!)
- Axial Tube side nozzles contribute to maldistribution

Higher tube side pressure drop would be beneficial

CFD Simulation of Bundle Maldistribution

side view

plane

CFD Simulation of Bundle Maldistribution

	before (empty)	after (hiTRAN)	
Tube pressure drop	2.5 kPa (>85% nozzles)	20 kPa (~10% nozzles)	

Plain empty

hiTRAN installation and benefits

	before (empty)	after (hiTRAN)	
Tube pressure drop	25mbar (>85% nozzles)	200mbar (~10% nozzles)	
Tube side heat transfer	<285 W/m2K	~980W/m2K	
Shell feed outlet temp	240 ℃	314℃	
Tube effluent outlet	115	82	
Mass flow	27kg/sec	42kg/sec	
Load on fired heater	4.2MW	2MW	

Annual energy savings of \$ 233000

Case Study 3: Research and Development

Fluid movement, cooling Re 253, 70 ℃ inlet and 7 ℃ wall

CFD Simulation Plain empty tube

Simulation verified with experimental data for different Reynolds numbers 70 ℃ Inlet temperature; 7 ℃ Wall temperature, 2.5m tube length; Viscosity 12cP

Verifying CFD Simulation results with experiments

Dye Stream hiTRAN

Verifying CFD Simulation results with Cal Gavin heat transfer measurements for hiTRAN

	Outlet Temp (°C)	% dev	
Reynolds number	CALGAVIN	CFD	
190	60.98	60.61	0.6
496	62.08	61.94	0.2
1014	62.71	62.61	0.16
1993	63.28	63.17	0.17

65°C INLET Temperature, 40°C Wall temperature, 1000mm test section

Fluid movement hiTRAN

Re 253, 70°C Inlet and 7°C Wall Velocity profile at outlet

CFD Simulation Plain empty tube compared to enhance hiTRAN flow

Example Simulation verified with experimental data:

70°C Inlet temperature; 7°C Wall temperature

2.5m tube length; Reynolds number 253; mass flow 195kg/hr; Viscosity 12cP

Flow Stratification

Tube ID: 22 mm, Tube Length: 2500mm, Reynolds number 190, Inlet 65°C Wall 40°C

Residence time Distribution

Static mixer Heat Transfer – Heating Experimental and CFD comparison

Fluid used: Glycerol

Viscosity: 350 cP at ~35°C

Reynolds number Range: laminar 1 to 28

Inlet Temperature: ~30 °C

Wall Temperature: ~64°C

Comparison of Experimental and CFD results

Static Mixer: Re 16, Inlet 30°C and Wall 60°C

hiTRAN: Re 14, Inlet 30 ℃ and Wall 51 ℃

Case Study 4: Tube-side Flow stratification

Goal of Revamp is to increase polymer outlet temperauter

	Plain 9.2bar	hiTRAN 6.3bar
No of passes	4	2
Steam pressure [bar]	9.2	6.3
Steam temp. [C]	176	160
tube side HTC [W/m ² K]	100	206
Tube side outlet [C]	101	124
Tube side dp [bar]	2.7	2.9

Mixed Convection causes flow stratification

Case Study 5: Temperature Pinch

Heat transfer	Plain design
Tube side / Reynolds ~ 1800	400 W/m ² K
Shell side	300 W/m ² K
Overall U	140 W/m ² K
EMTD	~9°C

	plain
No of shells [-]	2 parallel
Total tubes [-]	10348 x 12.8m long
Total area [m ²]	7821

In tube temperature pinch in conventional design

HTRI warning message on plain tube design:

Intube temperature pinch predicted in tubepass 1: The localized temperature pinch could effectively nullify up to 55.6% of the tubeside heat transfer surface area in this tube pass.

CFD simulation over 10.2m tube length with: water inlet 103 °C

In tube temperature pinch in conventional design

Water outlet temp: 74 °C ΔT on tube cross-section ~10 °C

Water outlet temp: 69 ℃ ΔT on tube cross-section ~2 ℃

Empty tube

hiTRAN

No in-tube pinch

Conclusion

- This presentation has shown a variety of uses for CFD they include:
 - ➤ Identification for the cause of an air cooled heat exchanger underperformance
 - ➤ Investigation ACHE air-side flow distribution
 - Shell and tube tube-side maldistribution
 - ➤ Identification of flow stratification and temperature pinch
 - > Research and development
- There are many more possibilities to explore using CFD:
 - New heat transfer enhancement geometries
 - ➤ Turbulence flows
 - ▶2-phase flow

CALGAVIN Limited, UKSpecialist Heat Exchange Engineers

What we do?

- Provide thermal engineering solutions to:
- ➤ Optimize plant production
- ➤ Solve production limitation problems
- > Reduce energy costs
- ➤ Enhancement technology (hiTRAN)

CALGAVIN: Solving Problems, Saving Costs

- Study to revamp operations Providing consultancy advice through project engineering to improve plant operations.
- Design Services Enhancing heat exchangers using various software such as HTRI, Aspentech and hiTRAN SP.
- Analytical engineering services Analysing the performance and operation of existing heat exchangers, making comparisons between original designs and enhanced designs for improved efficiency.

Any Questions?

Email: william.osley@calgavin.com

Tel: +44 1789 400401

Fax: +44 1789 400411

