

Condenser Vacuum Pumps

- Condensers are provided with vacuum pumps/ejectors
- The condenser creates the vacuum, NOT the vacuum pump
- Vacuum pumps are there to extract air and pump it up to atmospheric pressure
- A startup ejector ("hogger") is provided to create a rough vacuum in order to start the turbine

Is There a Problem?

- Plant operator is typically concerned about turbine exhaust pressure
- First task is to establish whether the exhaust pressure is higher than expected
- Two issues:
 - The plant measurement may not be accurate
 - The turbine exhaust pressure will naturally vary with plant load and CW temperature

Identifying Faults

- Three most common causes of condenser performance problems:
 - Air accumulation in condenser
 - Cooling water fouling
 - Reduced cooling water flow
- Unfortunately, all have the same effect on condenser performance:
 - Increase in turbine exhaust pressure

Fault Diagnosis

- To differentiate between the various causes of high turbine exhaust pressure, examine temperatures, not pressure:
 - CW flow reduction is indicated by increase in CW temperature rise
 - Fouling is indicated by increase in temperature approach (T_{sat} – CW_{out})
 - Air accumulation is indicated by increase in temperature approach *and* increased ΔT between T_{sat} and condensate temperature

Confirming and Fixing Faults

- Reduction in cooling water flow is caused by fouling or a pump fault
- Fouling can be confirmed by inspection (most condensers have divided waterboxes)
- Air accumulation is a more complex issue
- For air to accumulate:
 - Vent rate too low (vacuum pump fault)
 - Ingress rate too high (air leak)

Vacuum Pump Faults

- Generally rare, although original specification may be deficient
- For LRVPs check seal water temperature
- For steam ejectors check motive steam pressure (too high or too low)
- Detailed troubleshooting outside scope of this presentation

Air Leaks

- Some in-leakage is expected (hence the vacuum pump)
- Vacuum pump is usually over-specified (especially if to HEI Standard)
- Once excess capacity is used, any additional in-leakage will cause turbine exhaust pressure to rise
- Vacuum boundary must be maintained

Air Leak Detection Methods

- Many methods exist
- Online methods:
 - Feathers / Smoke / Candles
 - Ultrasonics
 - Helium testing
 - Halogen testing
- Offline method water fill test
- Online testing with tracer gases is the most successful approach

Case Study

- 200MW electrical generation unit in Ireland
- High turbine exhaust pressure on startup after outage, close to turbine trip point
- Outage scope had included:
 - Condenser cleaning
 - LP turbine rotor removal
- Heat balance indicates full CW flow
- Hotwell temperature inconclusive

Case Study - Actions

- Evidence suggests air leak
- High probability of leak at turbine shaft seals
- Helium testing ordered to confirm diagnosis:
 - Warranty issue
 - Shutdown required to repair
 - Which shaft seal is leaking?
 - Other leaks?

Case Study - Results

- Leakage at both turbine shaft seals confirmed
- Additional leakage also found at:
 - Turbine bursting disc
 - Cracked weld on pipe
 - Plugged connection on condenser shell
- Resolution of non-shaft leaks moved turbine pressure away from trip point without shutdown

Condenser Monitoring

- Critical situations can be avoided by regular monitoring
- Monitoring pressure not very useful
- Monitor key temperature differences:
 - $-(CW_{out}-CW_{in})$
 - $-(T_{sat}-CW_{out})$
 - $-(T_{sat}-T_{hotwell})$
- Perform vacuum decay testing
 - Isolate vacuum pump and measure rate of pressure increase